Abstract

The main purpose of this project was to investigate into the applications of
both neural networks and genetic algorithms, and use the findings to create
realistic artificial intelligence for a race car to be able to drive around a race
track. The race car is able to drive around a track based solely on the
surrounding environment, after being trained to predict and response in a
realistic manner. The training phase involves the use of crossover and
mutation, and is modelled using Darwinian evolutionary principles. The
combination allows the race car to adapt and inherit the best features from a
sample of different race cars. This results in the creation of a race car that can
drive around tracks efficiently, taking advantage of a basic form of intelligence
possessed by living creatures. The software is developed within XNA using
C#, and the framework was developed using an adapted version of the MVC
design principle. XNA was selected as the language due to the practical
applications of Al within gaming. The finished product was designed in such a
way that it can be directly applied to applications which require some form of
realistic behaviour in the form of a human or other living creature.

Introduction

The concept of neural networks within computing, and especially gaming, has
become a particular area of interest within the last 100 or so years. As such,
the creation of better and more efficient methods of accomplishing
computation problems has increased also, and the concept of a more realistic
artificial intelligence is now starting to be realised within gaming and
simulations alike. This project aims to combine two areas that have been of
particular interest to me in the recent year; artificial neural networks and
genetic algorithms.

The applications of both of these areas of computing have been realised in
many different ways in the recent years. Face recognition software and
fingerprint scanning which not long ago would have seemed to be luxury
computer peripherals are now developed with the mass public, and this in turn
is due to the growing understanding and research into both neural networks
and genetic algorithms. For this project, the aim is to use these methods to
create a form of Al which will allow a car the ability to perceive itself within a
race track, with one goal in mind; driving around the track in the most efficient
manner possible.

In this project, research will be conducted into the principles behind both
neural networks, and genetic algorithms. This will include looking into the
different ways that these principles exist, such as the different types and
variants of each, and will also involve research into applications which already
exist using these principles. The chosen development platform is the XNA
framework within C#. The XNA framework will allow provide facilities for
dealing with 2D graphics, and will allow more focus to be placed on the design
model itself. This project aims to hopefully inform the reader of these
principles, and also provide the reader with enough knowledge to understand
these principles, and gain something in return. This project also hopes to
explore new and different ways of looking at what currently exists to-date, and

as a result create something that is informative and unique to people who are
beginners to the area of computing, or who seek research for work of their
own.

This project is arranged in a series of chapters. The first chapter is the
literature review. This chapter collates research that has been gathered from
different sources (books, online, etc) into an informative series of sections
covering the concepts of both neural networks and genetic algorithms. It is
recommended that people who are unfamiliar with either of the previously
mentioned topics read through this section and understand as much as
possible before reading further. The topic uses an array of cross-referenced
sources for ascertaining the information required for the chapter, so if the
explanations aren’t as helpful as you’d desired then researching into the
references may provide a better understanding.

The next chapter is on analysis and specification. This chapter aims to
summarise the information gained from the literature review, and produce a
set of key considerations for each relevant part of the research. The
specification that follows is based upon the considerations made in the
analysis, and is designed to aid in confirming whether the project is successful
at the end of the report. As this project emphasises upon neural networks and
genetic algorithms, considerations for basic design principles and such are
not mentioned here. This is due to the time restraints imposed for this
particular project, and emphasising on the particulars had a much higher
priority. To note, my personal preference of design patterns usually falls
between MVC (Model — View - Controller) and/or the Command pattern. This
project will almost certainly use the MVC pattern, and there are plenty of
resources available on the internet if further research is desired.

The design chapter will then follow, which will detail all the intricate design
details for how each of the key components of the system will operate. This
section aims to clarify the direction of the project based upon the specification,
and is designed to detail each of the main specification points.

The next chapter briefly covers the implementation. A class diagram is
displayed here showing the final structure of the software. Considerations and
changes made during the development would usually be here, however
they’ve been placed within the next chapter for critical analysis purposes.

The final chapter covers the critical evaluation and conclusion. The final result
is analysed here, including the analysis of which parts went well, which parts
didn’t, and which parts needed changing and why. A reference list containing
all research sources is also provided at the back of this report.

Literature Review

Neural Networks

The project will require a thorough understanding on neural networks. The
neural network is the fundamental component of the project, and hence
requires a large amount of research to allow for a successful final product.
This section covers the areas regarding the key concepts of a neural network.
Also considered are the different types of neural networks available, and
research into previous examples of where neural networks have been used
successfully. These factors will give a clear indication in regards to the
direction in which development needs to take place.

What Are Neural Networks?

A neural network is a series of interconnected cells called neurons, which are
able to send signals to each other. The signals received by each individual
neuron, when combined together, are able to create various outputs. The
combinatorial effects of such signal transmissions mean that each neuron
individually can influence the way a network behaves, allowing complex
computations to be performed when different individual input are used within
the network.

Before being able to understand how a neural network can be emulated in
code, it's fundamental to understand the different components which make up
a neural network. Neural networks consist of a network of neurons. Neurons
contain branches called dendrites, and at the end of each dendrite is a
synapse. The synapses within each neuron receive signals from each other
neuron they’re connected to, resulting in a large network of interconnecting
neurons. A neuron generates an electrical signal by calculating the inputs of
each of the connecting neurons, and if a certain threshold is met, the neuron
fires. When a neuron fires it sends a signal through the axon, which branches
to one or many other neurons, and enters through the neurons dendrites, thus
repeating the process:

Synapse

Analysing the model, it can be determined that neurons can be modelled in
very basic terms. The neuron receives inputs, and uses these inputs to
generate outputs. These outputs then become the inputs for other neurons. In
the biological model, incoming signals only fire if the input from other neurons
exceeds a defined voltage. This is referred to as the threshold, and this
threshold determines the amount of voltage that is transmitted as output if the
neuron fires. The biological model is too complex to model, mainly due to the
chemical reactions used when generating the specific voltages needed for
each neuron firing. Instead, when modelling a neuron, the inputs are summed,
and fed into what is known as the activation function. There are many different
types of activation function, each one producing an output that is defined
within certain constraints. The most common two are as follows:

The Step Function

This function simply takes the inputs from each neuron, and after summing
the inputs determines whether the result is above the threshold. If the result is
above the threshold, than the output produced is 1. If the result doesn’t
exceed the threshold, then the output is a O:

Threshold
+1
This activation function

fires if the input meets
the specified threshold

time

This form of function works well for binary computation, where different inputs
of 0 and 1 can be interpreted into different output patterns. During research, it
was found that these activation functions are useful when emulating the type
of computational logic used in traditional logic gate circuitry.

The Sigmoid Function

This function takes inputs from each neuron, and after summing the input
feeds the result through an equation, which gives the output in the form of a
hyperbolic tangent:

Threshold
+1

Time

The hyperbolic tangent is best at emulating the process which is performed
when a biological neuron fires, and so has much more practical applications
when creating realistic responses between neurons. The output created by
this activation function is a decimal value between the range of 0 and 1. The
function can be altered to enable the outputs to range between -1 and 1. This
is known as the bipolar sigmoid activation function.

Types of Neural Networks

There are various different neural network variants that exist; each designed
to tailor a specific set of problems. The network types discussed here will
focus upon artificial intelligence and the process of learning only. These
networks include the Hopfield Net, single-layer perceptron, and multi-layer
perceptron.

Hopfield Net

The Hopfield network is a network which provides associative memory by
using a series of interconnecting neurons. Neurons act as both inputs and
outputs, and except binary threshold values:

Each neuron is connected to
every other neuron, excluding
itself.

Weights exist between each
connection. These weights are
used to calculate whether the
desired threshold is exceeded

This network can be used to store binary patterns, which if incomplete will
merge at the local minima. In simplistic terms, if a pattern is incorrect by a
certain margin of error, the inputted pattern will revert the closest desired. This
is the reason why it's considered associative; because if you input a nearly
correct pattern, it will associate it with the nearest pattern that it has stored at
that time.

Single Layer Neural Network (Perceptron)

A single layer neural network uses neurons in a linear manner, as apposed to
the Hopfield network shown previous. Instead of having independent neurons
interacting with each other, they instead interact through a layer, which
separates input neurons from output neurons:

Each neuron within the
green area is a part of the
input layer, and each neuron
within the blue areais a part
of the output layer. Each
input neuron is connected to
every output neuron, with
each connection having a
specified weight value.

These networks allow input values to be entered, and depending on the
weight values for each interconnecting value, as well as the activation function
chosen, specific output can be created. These outputs can be used within the
learning process (genetic algorithms in this case), to modify the weight values
until the neural network learns to accept the inputs that it’s given.

Multi-layer Neural Network (Perceptron)

The multi-layer neural network is similar in principle to the single layer
network, except that is uses more then one layer. The addition of a ‘hidden’
layer is used, and provides greater complexity:

This network is
similar to the
.@ single layer,
" except there is an
4\ additional layer,
| called the hidden

layer (shown as
orange).

Examples of Neural Networks

Neural networks are used for a variety of different tasks, usually which involve
some form of artificial intelligence. There are other uses however, which cover
a large range of difference subject areas, including telephone noise
cancelling, associative memory storage, and artificial life, and many many
more. A good comprehensive list detailing the different applications which
neural networks can be used for can be found here:

http://tralvex.com/pub/nap/ (Travlex Y, 2006)

In the following example Jeff Hannon, a developer at the games studio
Codemasters, discusses when he created a neural network design for the
game Colin Mcrae Rally 2.

http://www.generation5.org/content/2001/hannan.asp (Hannon J, 2001)

Genetic Algorithms

Genetic algorithms will allow the racing Al to adapt and evolve into a working
system. While the neural network may explicitly control the behaviour of a
racing car, the genetic algorithms have a direct impact in regards to how the
racing car perceives the world around it. This section contains basic
information regarding how genetic algorithms function, and looks into the
different types of genetic algorithms available. Current examples of genetic
algorithms used in similar applications are also covered, providing information
regarding the potential pros and cons of already existing solutions.

What are Genetic Algorithms?

Genetic algorithms are essentially search algorithms which use evolutionary
methods and techniques for finding a desired result. The use of evolutionary
methods such as selection, crossover and mutation are generally used within
genetic algorithms, however there are cases when not all of the previously
mentioned are used (simulated annealing for example.). This section will
briefly cover the basic concepts behind genetic algorithms, as well as some
more specific points which relate to the project.

Genetic algorithms use many of the same concepts shown in biological
genetics. There will likely be a population of entities, and these entities will
likely be of the same species. As such, this species will share common
characteristics and traits. These traits make up the blueprint for the species,
and are referred to as genes. Each gene is encoded to contain information for
a different part of that species make-up, for example eye colour or hair colour,
and the possible options that exist for this gene are known as alleles. These
long strings of genes are then connected further into what are known as
chromosomes. And finally, the species genotype is the combinations of
different chromosomes with different variations. The diagram below details the
relations between these terms:

Genotype

AlB|C|DJE|JA|B|C]DJE JA|B]C|DJ|E

Chromosome 1 ' Chromosome 2 ° Chromosome 3

This genotype consists of three chromosomes, each
containing five genes. The genes in this example, shown in
blue, accept the letters A - E as values. These possible
values are known as alleles.

The position of a gene within a chromosome is referred to as the locus. Within
genetic algorithms, it's often the case that algorithms need to manipulate
individual genes within chromosome. This is because unless the algorithm is
being developed to accommodate multiple different traits at once, only a
single chromosome may need encoding as part of a genotype. This is

particularly the case when genetic algorithms are used for searching and
retrieving information based on set inputs.

Selection

Selection is the process which involves selecting a proportional sample from
the population, based upon the samples fitness. The fithess for each member
of the population indicates whether or not that member is particularly good or
bad at the task it needs to complete. There are various methods for selecting
which members of the population are the most suitable.

Roulette wheel is generally the most popular, as it promotes a strong
parallelism with how selection occurs in real world scenarios. For roulette
wheel selection, each member of the population is given a certain percentage
chance for selection based upon their fitness score. This method ensures that
even those members of the population with low fitness scores have a chance
at being chosen for selection.

The next selection method looked into is the tournament selection method.
This method is likely as one would expect, in that the population is placed into
a tournament-style competition, and the candidates that reach a certain level
in the tournament are selected. Each candidate is randomly picked to face
another randomly picked candidate, and the winner is the candidate with the
highest fitness. The winners of these rounds progress to compete against
other winners, and the process repeats until there is a winner:

a The population here

consists of four entities.

in this instance, if the
60 desired selection size is
two, then the entities
with both 60 and 40 for
their fitness would be

[] selected.
60 | 40 l

The final selection type which isn’t used very often is truncation selection. This
method involves ordering the population by fitness, and then keeping the best
candidates of a certain fraction, for example keeping the best half. This
method isn’'t used much because of the way it filters out members of the
population that may potentially contain desired genes, and therefore rapidly
decreases population diversity. There may be a way to counteract this
problem with high mutation rates, similar to simulated annealing. It should be
noted that this is a theoretical observation made by the author, and not a
tested and confirmed method.

Crossover

This is the process which involves switching the genes of two selected sample
members so that the resulting result is a combination of both the original
sample members. Crossover generally follows the same basic concept; in that
genes which have been selected for crossover follow a set pattern. The locus
within each chromosome is generally used to split the array of genes up, and
then these genes are swapped over at the locus:

IlJJKJLM|NJO]P

After swapping the two sets of genes above at
the locus (denoted by a red line), the result is a
combination of the original members of the
population

I'|JJJKJL|E]JF]G]|H

Choosing to swap at multiple different loci is also possible, however caution
needs to be taken that constraints regarding the chromosome are not broken
in the process. Alternating between crossover methods allows for a more
realistic evolutionary process to occur, as biological recombination involves
the occurrence of dominant and recessive gene traits, as well as particular
chances regarding which genes will be crossed over and which will not.

Mutation

Mutation is the process of randomly mutations the value of a gene, based
upon a specified level of chance. Within biological evolution, the chances of
mutations are very small. For computational purposes however, a higher rate
is generally accepted so as to benefit the population in the shortest possible
time. Mutation allows for populations where convergence occurs quickly to
continue to evolve, allowing the populations level of diversity to be maintained
at a steady rate.

Mutation is performed differently, depending upon the encoding used for
genotype. For example, if eye colour was chosen to be mutated, there would
be a certain number of alleles that exist as potential eye colours. If these were
represented using a numerical value, then the mutation operator would need
to decide how best to mutate the value without destroying the constraints of
that gene. The rate and size of mutations need to be considered based upon
the situation, as small and infrequent mutations may have no effect, while
large and consistent mutations may prevent crossover from being effective.

Types of Genetic Algorithms

Genetic algorithms don’t seem to necessarily have particular types.
Depending on the situation, choosing only certain parts of genetic algorithms
may only be required. There is one particular type, which is also considered a
meta-heuristic algorithm; simulated annealing.

Simulated Annealing

This process operates in a similar fashion to how mutation occurs within
standard genetic algorithms. The big difference however is that only mutation
is used throughout the entire process. Crossover can be implemented as an
optimisation; however the fundamental concept of simulated annealing is that
a mutation occurs based on decreasing chance after each iteration of the
algorithm. Crossover also naturally doesn’t occur within simulated annealing
algorithms because the algorithm generally uses a population of only one. If
the fitness increases as a result of the mutation, then this one member of the
population keeps the changes made, else the member doesn’t change. This
cycle is then repeated until a satisfactory result has been produced.

Mutate Random Gene

The algorithm first
v Keep mutates a random
Changes gene. If the fitness is
better, then it keeps
the changes, else it
Calculate fitness discards the changes.
The cycle is then
repeated, and once the
fitness is good enough,
the solution is found.

Discard
Changes

Worse? Better?

Good Enough

Desired Solution

Examples of Genetic Algorithms

Genetic algorithms are generally used in many specific areas of computing,
and one of the most common usages of them is in finding the most optimum
solution. The travelling salesman problem is a classic example, which shows
the effectiveness of genetic algorithms against iterative algorithms when
working with large numbers of cities:

http://www.lalena.com/Al/Tsp/ (Lalena M, unknown)

Another use for genetic algorithms is the ability to evolve the behaviour of
artificial entities. In the following example, ‘organisms’ are evolved so that
they can become better eaters of the food growing around them:

http://math.hws.edu/xJava/GA/ (Eck D, 2001)

Analysis and Specification

In order to determine the aims and specifications, it's important that the
different ways in which the project can be accomplished are researched into.
This section will cover the analysis of the research contained within the
literature review, and looks at the different components which will be present
in the final system specification. Here, the aims for the project will be
established, and a clear set of the major tasks will be identified ready for the
design process. A successful analysis will also mean that future potential
problems can be isolated easier, and alternative options discussed in this
section will allow for different approaches to be taken if necessary.

The major components for analysis, identified after completing the literature
review, are as follows:

Neural Network Design
Genetic Algorithm Design
Track Design

Sensor Design

Neural Network Design

After conducting researching into a few different types, it became sufficiently
clear how to design the neural network for the racing car Al. Analysis of the
Colin McRae Rally game, which uses a neural network for its racing Al,
allowed me to understand on a basic level that it’s possible to successfully
implement a multi-layer perceptron for the task. After researching, it appears
that both single and multi-layer perceptrons are used in a large range of
robotic, movement based scenarios, and that the inputs and outputs can be
easily acquired without too much hassle. For example, the structure for both
the single and multi-layer perceptrons can be created as a stand-alone
implementation, which accepts input (information about cars surrounding) and
produces outputs (steering direction, speed). The usage of a multilayer
network should provide output data that is more precise, and that is capable
of handling more complex bends and manoeuvres on the track. The
downsides to using a multilayer perceptron are that a more complex
crossover system would be required. If however the neural network is
designed so that any number of layers can be implemented with ease, then
the network topology can be manipulated to facilitate in the creation of a more
successful model.

The values used for weights are another key consideration which needs to be
taken into account. The options consist of either integer values, or decimal
values. Integer values would require the creation of constraints, considering
that the range of whole numbers, as well as the requirement for only a fraction
of that range, would result in unpredictable results if the constraints are
broken. Decimal values, based upon the activation functions available, would
appear to be the best choice by far. Decimal values within C# can be created
easily using the Random class type, and it just so happens that the sigmoid

activation function utilises the usage of decimal values between 0 and 1. This
means that creating values for the weights during the initialisation stage of the
network would be considerably easier, and more efficient to develop and
maintain in code.

The inputs for the network then would need to represent the track details as
effectively as possible. Examples which have been looked at generally make
use of straight line ‘sensors’, which in most cases act as rays. The information
returned from these sensors is then put into the network as inputs, and the
output produced causes the entity to perform some form of action. Steering is
usually one of the outputs, so this will almost likely be the case for the neural
network design for this project. The usage of acceleration seems to be an
interesting idea as well, as many of the examples which were used didn’t
feature any form of speed moderation as an output.

Genetic Algorithm Design

The genetic algorithm can easily be encoded by using the weights from the
neural network as the genes which make up a chromosome. This data can
then be subjected to the standard processes involved in genetic algorithms,
such as selection, crossover and mutation. The selection process would likely
use roulette selection under most circumstances, however the usage of
truncation selection may prove to create a more interesting outcome. In order
to make this project more unique, the truncation selection method can also
provide more information as to its suitability within this type of project. Also,
because the algorithm can easily be interchanged with another selection
algorithm, the creation of a roulette selection algorithm may be possible
depending on the success and available time during the projects development
cycle.

Crossover could possible be performed using a type of ‘staggered’ pattern,
such as swapping genes at each odd or even locus. Once again,
modifications can be made if this method proves to be ineffective, assuming
there is available time to do so.

Mutation should likely occur at a consistently high rate. This would allow the
truncation selection to select more diverse samples from the population; by
modifying select genes until the best genetically modified car is bred.

Track Design

A track design of some form will need to be created, which enables the car to
intact with it, and determine where it is on the track. The use of different
colours for the track and non-track space would appear to be a potential
option, as the colour of each pixel can be determined by mapping the 2D
texture and acquiring the colour that the car is currently on, or is near. Another
option would be to use collision boxes, however determining the extent of
collision using such a method may be more complex then desired. Based on
the research into how the neural network will accept data, the usage of pixel
colour checking would better suit the facilitation of some form of line based
sensor.

Sensor Design

Based upon the potential idea of using pixel checking for determining the cars
surrounding, a line, or vector based, sensor could be used to check whether
certain points in a straight line distance away from the car are road or not
roads. Another option could involve using a ray to calculate the distance;
however there are several difficulties with that idea. Firstly, the
implementation of such a thing would require much more extensive research.
The second point is that if a ray was used, then the output of the ray would
need to somehow be normalised to meet the input criteria for the chosen
neural network design. Simulating the usage of a ray by defining the length
and checking points along the length would prove much more successful,
especially considering that they’d be more resource friendly, and hence
wouldn’t cause slow down issues when a large population is being iterated
through.

Specification

Using the above analysis, and by filling in the details in-between, a list of aims
and objectives can be created, detailing each of the tasks which need
completing in order to successfully complete the project. The specification
objectives are as follows:

e Complete neural network implementation, which includes the
completion of a fully functional activation function, and generation of
desired outputs.

e Complete genetic algorithm implementation, which includes the ability
to reproduce more successful cars.

e Complete track implementation, including the implementation of track
segments and desired direction vectors.

e Complete the sensor implementation for each car, and ensure that the
sensors accurately collect data about the layout of the track in range.

e Successfully combine all of the above, and then create a training
system which allows the user to train the network under supervision.

e Allow the best car from the population the ability to race on an entirely
different track, to test whether the training of the car was successful.

Design

In this section, each of the subjects which are covered in the analysis is
worked upon. Designs which incorporate the research and technical
information gathered in both the literature review and analysis are used to
create implementation-ready designs.

Neural Network Design

The neural network takes advantage of the object-orientated nature of C#,
and allows the creation of a completely separate and modular design model,
which can be incorporated into the implementation for the car. Each neuron
within the network requires connection to every neuron in the layer above.
The most effective method available involves first splitting the layers of the
network up into three distinct layers; the input layer, the hidden layer, and the
output layer. These layers each facilitate in storing three different types of
neuron signified by their parent class, these being input neurons, hidden
neurons, and output neurons. Each neuron within each of the layers stores a
certain amount of information which allows them to function correctly. It just so
happens that the amount of information stored by each type of neuron
increases, using the same information as neurons that proceeds it. Therefore
the following model can be created:

(NeuraINetwork

LCIass

iy

' outputLayer 2 hiddenLayer = inputLayer
OutputNetwork... * HiddenNetwork... * InputNetworkla... =
Class Class Class
“F neurons “F neurons “F neurons
OutputNeuron HiddenNeuron InputNeuron
Class Class Class
-+ HiddenNeuron -+ InputNeuron

In the model above, the neural network class contains a single instance of
each of the required layers that it needs to function. Within these layers, lists
of neurons relating to the relevant neuron type are stored.

As shown in the model, the input neuron is used as the base class. This
neuron stores only inputs, and because all neurons contain inputs, then this
works as a suitable base class. The hidden neuron also contains inputs, and
therefore can inherit this from the input class. It also contains additional

information about the weights for the input neurons that it shares connections
with. These weights are stored within an array, which contains all the
connections relevant to each input neuron in the proceeding layer. Finally, the
output neuron uses the same information from both the input and hidden
neuron class, and thus only needs to inherit from the hidden class, as it
contains the input class data through inheritance already. The output neuron
class has additional data regarding the output created from after the activation
function is used. The addition of the output data provides clarity for the overall
structure of the network. It should be noted that it is possible to link hidden
neuron layers together, and thus avoid the need for the output layer. However
for the sake of coherence, the output layer exists within this particular
instance of model.

The layers of each neuron type alone are not enough, as these layers are
only designed to store data. Additional methods are required that allow these
layers to interact with other, and therefore create a functioning neural network.

Firstly, there needs to be some form of initialisation for each relevant neuron
in the network. This initialisation will provide each of the weights that exist
within each relevant neuron with an initial random value. This random value
will be within the specified constraints, and will provide a completely a neural
network that is created with completely unique neurons as part of its setup.
The easiest way to perform this initialisation will be to iterate through the
weights both the hidden and output layers’ neurons, and to allocate a random
number within the ranges permitted (decimal values between -1 and 1). The
pseudo code would look something like the following:

Foreach (HiddenNeuron neuron in hiddenNeuronLayer)

{
Foreach (double weight in weights)
{
Weight = random value between -1 and 1;
}
}
Foreach (OutputNeuron neuron in outputNeuronLayer)
{
Foreach (double weight in weights)
{
Weight = random value between -1 and 1;
}

The next method which needs implementing is the bipolar sigmoid activation
function. As mentioned within the analysis, the bipolar sigmoid activation
function will provide outputs within the desired range, and will also
accommodate the inputs within the same range. This function is also much
easier to implement, and based upon the required results will suit the
designed neural network much better then the others mentioned in the
analysis. Both the mathematical and pseudo code are shown below:

1-&77

1+&7°

glx) =

In C#: ((1.0 - Math.Exp(-(input))) / (1.0 + Math.Exp(-(input))));

Input is the sum of all inputs, and Math.Exp() is used to return the exponent of
the passed parameter.

With the activation function determined, all that remains is to create the
method that will use the activation function and inputs and weights from each
neuron to generate an output. The output for each neuron will then be used as
the inputs for the next neuron layer. This will be done by iterating through
each neuron, and multiplying the input from the previous neurons with the
weights attributed to those neurons. The results will then be summed
together, and the result will be used as the input for the bipolar sigmoid
activation function. The code pseudo code is as follows:

Foreach (HiddenNeuron hiddenNeuron in hiddenNeuronLayer)

{

numberOfConnections = hiddenNeuron.weights.length;
for (int x = 0; x < numberOfConnections; x++)

{
sumOfinput += hiddenNeuron.weights[x] *
inputLayer.neurons(x].inputValue;

}

hiddenNeuron.inputValue =
bipolarSigmoidActivationFunction(sumOfinput);

}

Foreach (OutputNeuron outputNeuron in outputNeuronLayer)

{

numberOfConnections = outputNeuron.weights.length;
for (int x = 0; x < numberOfConnections; x++)

{

sumOfinput += outputNeuron.weights[x] *
hiddenLayer.neurons|x].inputValue;

}

outputNeuron.output = bipolarSigmoidActivationFunction(sumOfinput);

The first half of the above code will iterate through the hidden layer, and use
the number of connections contained within each hidden neuron to determine
how many input neurons exist to connect with. Once the number of
connections have been established, the weights at stored at each index in the
hidden neuron are multiplied by the input value within the input neuron that
matches it. The example below should show this much more clearly:

N = Neuron
W = Weight

This diagram shows
how each hidden
neuron has multiple
connections with
each input neuron,
however the weights
for each connection
are unique to each
individual hidden

W J A Juj neuron

The second half of the code is identicial to the first, except the results from the
activation function in the first half are used to calculate the output within each
outputNeuron. This design should enable the creation of the network setup
decided within the analysis, using five input neurons, three hidden neurons,
and two output neurons. This design also means that if furthur neurons need
to be added at any point, the relationships between connections can be done
by simply manipulating the number of connections for each layer in relation to
the number of neurons in the previous layer.

Genetic Algorithm Design

The genetic algorithm needs to be able to access the data contained within
the neural network. In specifics, the data required is the weight data stored
within each of the hidden and output neuron. Manipulating this data
genetically will allow the neural network for each car to evolve based, upon
whether the neural networks being used by each particular car are effective at
guiding the car around the track.

The first important task is establishing how the genetics for each car can be
established using the weights for each network. The weight data for each
neuron is stored within an array, and this was intentionally done so to provide
easier access to the data. So, the data can be theoretically considered to be
encoded as shown below:

Hidden Layer

Wigpwziwi|wijwiiwz|wi | wiajwijwzjwi|wiajwil|wz]jws|wi

Hidden Neuron 1 Hidden Neuron 2 Hidden Neuron 3 Hidden Neuron 4

The red lines shown above outline the locus that separates each encoded neuron within
the chromosome. As the neural network already stores these encoded values within an
array, the index of the array acts as the locus at each point of the chromosome. This allows
easy access to relevant genes within the chromosome, and facilitates the crossover and
mutation operators needed to evolve the population

The diagram above details a hidden neuron layer containing four hidden
neurons, which each in contain four weights. In this instance, the first four
weights would theoretically represent the first four genes in the chromosome.
Then the next four would represent the next four, and so on. The advantage
to this is that all four elements at the specified locus can be accessed using
the index for the array, and therefore the formatting for each individual trait
within the chromosome is always kept intact. This means that crossover and
mutation will be considerably easier to perform using standard search and
swap algorithms, and constraints in regards to the structure and value ranges
will be conformed to.

Crossover

The desired algorithm will take the ‘even’ loci of the first chromosome, and
swap them with the ‘even’ loci of the second chromosome:

The previous diagram does not represent the values used within the
chromosomes. The usage of numbers and letters are simply for clarity. Those
values would instead be decimal values between -1 and 1. An algorithm for
the above crossover would involve iterating through a hidden neuron using an
index, using that reference to access the weight value, and then using the
same index, iterate through the second hidden neuron selected for the
crossover method. The index will be incremented by 2, as apposed to 1, so
that every-other weight is selected, and then these two weights will be
crossed over. The pseudo code is as follows:

For (int weightCount = 0; weightCount < hiddenNeuron1.weights.length;
weightcount +=2)
{
tempWeightValue = hiddenNeuron1.weights[weightCount];
hiddenNeuron1.weights[weightCount] =
hiddenNeuron2.weights[weightCount];
hiddenNeuron2.weights[weightCount] = tempWeightValue;
}

The above code will then be used for each neuron in the neuron layer, as
shown in the above diagram as the point after each red line (locus).

Mutation

Mutation will occur based on a set rate, and will occur before crossover of the
two selected neurons. The mutation will involve increasing or decreasing one
of the weight values stored within each neuron by a random value, which will
be generated using a random number generator. The random number
generator will also select whether the previously generated number is added
or subtracted from the weight. In order to calculate which weight should be
selected from the neuron for mutation, a random number within the range of 0
and (neuron.weights.length-1) will be selected.

The code for this will simply utilise one random number generator that will first
produce a value which defines the size of the change, and a second value,
that will be checked against a constant value. This value will almost certainly
be 0.5, so that a randomly generated decimal number between 0 and 1 will
fall either above or below the value. The original random number is modified
to ensure that the change isn’t too significant, and then if the value falls above
0.5, then this value is added to weight. If it's less than 0.5, then the value is
subtracted from the weight. The pseudo code for this should be as follows:

mutatelndex = randomNumber.Next(neuron.weights.Length);
mutateSignCheck = randomNumber.NextDouble();
mutateValue = randomNumber.NextDouble();

if (mutateSignCheck > 0.5)
{

neuron.weights[mutatelndex] += mutateValue/10;

neuron.weights[mutatelndex] -= mutateValue/10;

The Selection Process

The selection method will be based upon the truncation selection method. A
sample size will be defined, and a population of cars will be created. The
sample will represent a a number of cars, each with an initally created neural
network. These networks will all have a very high chance of being completely
unique, and will therefore provide a highly varied sample. Inially, the sample
which is created randomly will be used in the first simulation as the first
generation, and will each receive calculated fitness levels based upon their
success at manouvering around the test track. Once the fitness levels have
been established, then a selection process needs to completed which ensures
that the best cars are kept for breeding, and the others are discarded from the
sample. Based upon the literature review and mentioned in the analysis, it
would appear that strictly keeping the best cars using a tournament style
selection process is the best method for selection. Keeping the best half of the
sample, and then randomly crossing over pairs of cars will be the selected
method of selection. So now that the selection type is determined, a method
of randomly selecting these cars needs to be defined. This can be done quite
simply by selecting the first car in the list of sample cars, and then randomly
selecting another car from the remaining list, using the number of cars minus
one as the range for the random number selection:

Cl CZlEBN CL|+]C3] =|C5]C6

ﬂ Both selected cars are crossed over,
First Car Randomly and produce two additional cars

Selected Car
]

The remaining cars are left for selection

The method above ensures that the number of cars in the newly created
sample is identical to that of the original sample. To also ensure that there is
always a pair at the last iteration of the selection, the sample size will be set to
an even value. Once the the cars have been selected,and crossover and
mutation operator have been used upon them, the new sample is then run
through the simulation again, and this process is repeated until a satisfactory
car has been bred.

Track Design
Based on the analysis, the track will consist of an array of pixels, using two
colours to differentiate between whether that pixel is a part of the road or not:

This grid shown leftis
just a small
representation of a
larger pixel array,
containing red and
white coloured pixels.

If the car sensors
detect that a pixel is
red, then this indicates
that there is a wall at
the location of that
Sensor.

Each car will have access to the track data at all times, and to save on
memory usage all cars will have access to one instance of the track data.

In order to determine whether a car is travelling in the desired direction on the
track, the track will be split into segments, which will each contain a 2D vector.
The vector will become available to any car that is within the segment it
belongs to, and will provide the car will the data it needs to calculate its fitness
value:

The directional arrows
represent the desired
direction (vector) that
the car should travel in
and that track
segment. The red
segments highlight
where road is not
present, and any
vectors allocated to
these segments are not
used.

0 |<=|<=

v
=::=—{}

—

|| = §

Sensor Design

As one of the key components to the final product, the sensor class will need
to be capable of successfully relaying data about the track into each cars
neural network. First the method of detection needs to be established. Based
on the analysis, the easiest and most time effective way of accomplishing this
is by using multiple vectors. Then by using the cars current position, modifying
the vectors current magnitude, and taking the cars current heading into
consideration, multiple points along a line can be used to check for collision
with red pixels from the track:

The yellow circles represent the different points
along the vector where collision is checked for.
The diagram below shows what values would be
returned, based on the collision that occurs:

of vector

This would return the value 1. This would return the value 0.5.

As shown above, the return value for the furthest point for the sensoris 1. The
range for the sensor will be between 0 and 1, and all points inbetween will
have values relative to where they are between 0 and 1. These values will be
determined by dividing 1 by the maximum number of detection points. The
final sensor sensor which the car will use will consist of 5 of the above
sensors, placed as follows:

This final sensor uses 5 of the
sensors mentioned previous, and
combined them into a single unit.
The each sensor has 4 detection
points, and will span roughly
greater then the width of the
track.

Implementation

This section contains the class diagrams for the final product.

Neural Network

o inputLayer |

| NeuralNetwork 7 | InputNetworkla... ¥
Class i —=| Class
= Fields
#? _hiddenLayer
g¢ _inpuilLayer
¢ _outputlayer
j"’ randomSeed
= .
M.ethods ™ neurons
¥ bipolarSigmoid ...) _
% displayMetwerk . InputMeuron (¥
W generateCutput Class
& initigliselnputW... " .
W setlnputs
* czigmeidFuncticn
' HiddenNeuron E3
5 hiddenLayer Class
: L 4 —. =+ InputMeuron
HiddenNetwork... ¥ | = neurons
Clazs —— E Fields
- 3"’ _weights
= Properties
= weights
. QutputNeuron (¥ |
“ neurons | Class

' outputlayer | OutputMNetwork... ¥ |

L3 Class |

)

e

=+ HiddenMeuron

Framework Structure (including Genetic Algorithm

Modifications)

.Y -~ . -~ . p- 5y
[car E3 (CarManager 63 (TrackSegment E3 | Sensor E3
Class Class Class Class
= Fields = Fields E Fields = Fields
o# _carlmage @ _bestCarlD ¢ D o# _accuracylevel
_',V _currentDesired ... g,v' _cars L',V' _nextlD L',V _onTrack
_currentHeading BPerer‘ties o _optimumDirec ... &# _pixelData
& D PR pestCarlD & Properties 4% _range
@@ _neuralMNetwork SR o % g¥ _sensorAngles
i nextD = getBestCar = optimumVector i —sensorMap
- onTrack B spriteBatch
_",9 _sensor = Methods = Methods _',V ;F!:tEFDht
- _sensorMap W CarManager . % TrackSegment (.. B Properties
: W draw - !
4¢ _zpeed v s .
: 2" orderCarsByFit.., g ™ &' accurscylevel
#* _spriteBatch Gamel & = isOnTrack
& - W setBestCarlD —
_J,V _spriteFont :) Class =y range
¥ _steeringAngle v setCurrentDesir... -+ Game B Method
#* _totalDistanceT... | ¥ update | :
¥ _xPos h g = Fields v addSensor
Jg _yPos r,-T y f:\' ;’n“‘ bestCar V angleToVector
= Properties C:s'; &# displayFittest v draw
. : 2 finalTrack ‘% getSensorlnfor..
P currentDesired... L @ Sensor
B currentHeading =l Fields *"v fiztestToggle @ 5 M
r) . 4% graphics setbensorMap
= ID s _segmentSize e KevCheck N V,
B isOnTrack &% _sensorMap Jv SPE_EEBE:) B
- . ¥ spriteBatc
2T neuralMNetwerk ¢ _trackOverlay L P i =
- . 7 spriteFont GeneticPopulati... (A
=T speed @* _trackSegments ’
. . - ¥ testTrack Class
= steeringfngle E‘F‘roper‘ties # trainin
B totalDistancelr... . = g :
N P iy getTrackOverlay % trainingCarMan... = Fields
=T xPos , . .
L pos = sensorviap #? trainingGenePo... o _cars
f)
= = i
I Methods E Methods L',V _rateCfMutation
) W angleToVector 3% Draw =¥ randomSeed
¥ angleToVector @ tCoordT : =] rti
@ Car 2% convertCoordT... a9 drawText roperties
‘% compareVectors ¥ loadTrackSegm... ¥ Gamel = population
o drawFl):ar W retrieveSegmen ... #% Initialize B Methods
W Track (+1 (1 S
% drawSensor | rack (+ 1 over } ; LoadContent % addToGenePcol
W oreset [+ L ooverl., ;: ﬂnldoatdContent % clearGenePool
) p ~ 7 pdate
1" setSEnsc.rMap f CommanGraphi... [z % vectorToAngle .'L‘lv crossoverQenes
W update Class L g) % DeepCopy<T>
W vectorToAngle P . W evolvePopulation
i B Fields | CommonConten... (& ‘% evolvePopulati...
F Class : .
@ _graphicsDevic... % GeneticPopulat...
o tat 1 ov..
= Methods B Fielg . mutate [+ u:->\.r
IElas a"¥ orderCarsByFit...
W acquireGraphic... @ content \ Py,
W setupGraphics.. & Methods

. -

W acquireContent
% setupContentM...

L. >

!

Critical Evaluation and Conclusion

The final product has met all the requirements at the very least moderately
well. Each specification point will be evaluated separately.

Complete neural network implementation, which includes the completion of a
fully functional activation function, and generation of desired outputs.

The neural network itself works exactly as desired, and due to the structural
design is also usable as a separate class on its own. There were however
issues with the type of neural network which was originally being used. The
multi-layer neural network proved to be an unworkable solution when
attempting to crossover the genes for each neuron. This was due to epistasis.
This occurs when the modifying of one gene has impacts upon other genes
which rely on it. This meant that when crossover occurred between genes, the
changing of the genes within the hidden layer caused unexpected results at
the output from the output neuron layer. Thankfully, the design of the neural
network meant that the hidden layer could easily be bypassed, and as a result
the multi-layer network became a single layer network. This changed
successfully allowed the cars to breed, and so the decision to design the
neural network as was done seemed to be a good choice.

Complete genetic algorithm implementation, which includes the ability to
reproduce more successful cars.

The genetic algorithm and its operators work pretty much as desired. The
genetic algorithms work perfectly as they are, however that’s not to say that
the choice of selection method was efficient. It seems that using truncation as
the selection method worked fine; however the crossover diversity appeared
to suffer much more then originally expected. It seems that the amount of
potential for better members of the population isn’t as high as was expected,
evident by the fact that only generally between 1 and 5 out of 200 in the
sample set would improve their general fitness values after each iteration. If
more time was available, the implementation of the roulette wheel selection
would have taken place, as mentioned in the analysis. The choice to use a
staggered odd/even locus for gene selection during crossover also seemed
like a good initial thought, however with further consideration it actually seems
that doing so caused the crossover function to produce new members of the
public that were much too different in comparison to their parents. For
example, if one of the two members used in the crossover functions only
needed one gene from the other member in order to produce better offspring,
it wouldn’t work correctly as the gene required and every other gene that was
odd/even would also be crossed over within the same iteration.

Complete track implementation, including the implementation of track
segments and desired direction vectors.

This particular specification task works perfectly without any problems known
so far. This is likely due to the lower level of speciality involved in the process,
as this objective simply involved the implementation of a storage system

which can be accessed using co-ordinate data. The task of creating a series
of classes which store a global array of pixels and track segment objects was
fairly straight forward.

Complete the sensor implementation for each car, and ensure that the
sensors accurately collect data about the layout of the track in range.

The sensors were surprisingly easier to implement then first expected, and
work perfectly. They were also created in such a way that the number of
sensors, and the range to which they extended, could be modified and
customised with remarkable ease. The original idea was to essentially ‘hard-
code’, and make specific to the layout provided in the design. However, the
potential to refactor the design and replace constant values with user
configurable values meant that the class would be truly modular, and
tweaking could be performed upon the model in order to find the best length
for each individual sensor. The only possible missing aspect for the sensor
class was that instead of using images to signify each point of the sensor, the
letter ‘O’ was used. This was done as a temporary measure, however once it
became clear that time was becoming an increasingly problematic factor, it
was decided that it wasn’t a major concern and so was left in the final product.
The only issue that using the letter ‘O’ really caused was the issue regarding
the origin to which it theoretically should have rotated around. Although the
character can, in theory, be rotated and still remain the same, there were
some slight discrepancies regarding the sensor display not matching the
tracks pixel map. The different is only by roughly 2-3 pixels, and the affects
are only superficial. Apart from that it works as desired.

Successfully combine all of the above, and then create a training system
which allows the user to train the network under supervision

The training system works as expected. There is a notable limit to the size of
the population sample before the frame rate starts to decrease, however this
only effects the speed of the model, and not it’s efficiency in the task. The limit
appears to be roughly 200+, which is acceptable considering the amount of
computation performed for each car per frame. The drop in frame rate also
only occurs when all cars are displayed on screen. If the option to display the
best car only is enabled, then the frame rate increases dramatically. This is
likely due to the way in which the method was coded for displaying the
sensors. In order to display the sensors, each sensor is essentially checked
twice, firstly to acquire track data, and secondly to determine where to draw
the sensor points. Both methods were intended to be merged, and a boolean
value used to toggle drawing preference, however once again time was a
limiting factor. The functionality itself however works exactly as desired so,
apart from the point made previous, it seems that this specification point was
completed successfully.

Allow the best car from the population the ability to race on an entirely
different track, to test whether the training of the car was successful.

The final race track was a simple extension of the training track
implementation, and so works just as well. As passing the final track tests
whether the car is adequately trained, the conclusion can be made that it's
functioning perfectly, as the car is capable of traversing the track after a
successful training session. The advantage to the final race track is that there
are no desired vector directions required, and so as long as the road width is
roughly similar to the road width used in the training track, the track can be as
complex as desired without needing to fit within the size constraints of the
track segments. The successful completion of this specification point therefore
shows that the overall project was a success.

In terms of project management, if this project was to be repeated again, then
time management would be a point emphasised on the most. During the time
period allocated, the availability of free time, and also that of other module
deadlines, really needed to be considered when planning for the design and
implementation of the project. Neither was critically affected during this
project; however correct time allocation and job distribution for the different
tasks may have provided the extra time needed to implement the changes
desired for the roulette wheel selection function, the sensor image display
implementation, and the combination of sensor operations and drawing.
Another improvement that could have been made was to increase the amount
of documented research in the literature review, to reflect the amount of
research that was actually carried out. Unfortunately however, there was
simply not enough time to include everything without jeopardising the
completion of the entire report. The limit regarding the guideline number of
words was removed after discussing the problems regarding fitting the data
gathered within the documentation. Thankfully however, the amount of typed
content was able to be reduced to a minimum by providing much more
illustrations and diagrams through the documentation. It was essential to try
and maintain clarity while not exceeding the limits that were set, and so it
seemed that using specifically created diagrams would help in accomplishing
that feat.

In the end, with the specification points completed and a working deliverable
completed, it can be stated that this project was an overall success. In the
end, it seems it is indeed possible to model a form of artificial intelligence that
is capable of manoeuvring a car around a track.

References

Unknown. (Unknown). Neural Networks in Plain English. Available: http://www.ai-
junkie.com/ann/evolved/nnt1.html. Last accessed 15 February 2010.

Valluru B. Rao (1993). C++ Neural Networks and Fuzzy Logic. New York: MIS-
Press. p43-64

Rojas, R (1996). Neural Networks : A Systematic Introduction. Germany: Springer.
p03-147.

Mitchell, M (1996). An Introduction To Genetic Algorithms. London: The MIT Press.
p01-81.

Rabin, S (2004). Al Game Programming Wisdom 2. Massachusetts: Jenifer Niles.
p467-489.

Jeff Hannan. (2001). Interview With Jeff Hannan. Available: http://www.ai-
junkie.com/misc/hannan/hannan.html. Last accessed 15 February 2010.

Tralvex, Y. (2006). Neural Network Applications. Available:
http://tralvex.com/pub/nap/. Last accessed 22 April 2010.

Malasri, S. (2001). Hopfield Network Applet. Available:
http://www.cbu.edu/~pong/ai/hopfield/hopfieldapplet.html. Last accessed 24 April
2010.

Eck, D. (2001). 4 Demonstration of the Genetic Algorithm. Available:
http://math.hws.edu/xJava/GA/. Last accessed 16 April 2010.

