
Abstract 
The main purpose of this project was to investigate into the applications of 
both neural networks and genetic algorithms, and use the findings to create 
realistic artificial intelligence for a race car to be able to drive around a race 
track. The race car is able to drive around a track based solely on the 
surrounding environment, after being trained to predict and response in a 
realistic manner. The training phase involves the use of crossover and 
mutation, and is modelled using Darwinian evolutionary principles. The 
combination allows the race car to adapt and inherit the best features from a 
sample of different race cars. This results in the creation of a race car that can 
drive around tracks efficiently, taking advantage of a basic form of intelligence 
possessed by living creatures. The software is developed within XNA using 
C#, and the framework was developed using an adapted version of the MVC 
design principle. XNA was selected as the language due to the practical 
applications of AI within gaming. The finished product was designed in such a 
way that it can be directly applied to applications which require some form of 
realistic behaviour in the form of a human or other living creature.  
 

Introduction 
The concept of neural networks within computing, and especially gaming, has 
become a particular area of interest within the last 100 or so years. As such, 
the creation of better and more efficient methods of accomplishing 
computation problems has increased also, and the concept of a more realistic 
artificial intelligence is now starting to be realised within gaming and 
simulations alike. This project aims to combine two areas that have been of 
particular interest to me in the recent year; artificial neural networks and 
genetic algorithms. 
 
The applications of both of these areas of computing have been realised in 
many different ways in the recent years. Face recognition software and 
fingerprint scanning which not long ago would have seemed to be luxury 
computer peripherals are now developed with the mass public, and this in turn 
is due to the growing understanding and research into both neural networks 
and genetic algorithms. For this project, the aim is to use these methods to 
create a form of AI which will allow a car the ability to perceive itself within a 
race track, with one goal in mind; driving around the track in the most efficient 
manner possible. 
 
In this project, research will be conducted into the principles behind both 
neural networks, and genetic algorithms. This will include looking into the 
different ways that these principles exist, such as the different types and 
variants of each, and will also involve research into applications which already 
exist using these principles. The chosen development platform is the XNA 
framework within C#. The XNA framework will allow provide facilities for 
dealing with 2D graphics, and will allow more focus to be placed on the design 
model itself. This project aims to hopefully inform the reader of these 
principles, and also provide the reader with enough knowledge to understand 
these principles, and gain something in return. This project also hopes to 
explore new and different ways of looking at what currently exists to-date, and 



as a result create something that is informative and unique to people who are 
beginners to the area of computing, or who seek research for work of their 
own. 
 
This project is arranged in a series of chapters. The first chapter is the 
literature review. This chapter collates research that has been gathered from 
different sources (books, online, etc) into an informative series of sections 
covering the concepts of both neural networks and genetic algorithms. It is 
recommended that people who are unfamiliar with either of the previously 
mentioned topics read through this section and understand as much as 
possible before reading further. The topic uses an array of cross-referenced 
sources for ascertaining the information required for the chapter, so if the 
explanations aren’t as helpful as you’d desired then researching into the 
references may provide a better understanding. 
 
The next chapter is on analysis and specification. This chapter aims to 
summarise the information gained from the literature review, and produce a 
set of key considerations for each relevant part of the research. The 
specification that follows is based upon the considerations made in the 
analysis, and is designed to aid in confirming whether the project is successful 
at the end of the report. As this project emphasises upon neural networks and 
genetic algorithms, considerations for basic design principles and such are 
not mentioned here. This is due to the time restraints imposed for this 
particular project, and emphasising on the particulars had a much higher 
priority. To note, my personal preference of design patterns usually falls 
between MVC (Model – View - Controller) and/or the Command pattern. This 
project will almost certainly use the MVC pattern, and there are plenty of 
resources available on the internet if further research is desired. 
 
The design chapter will then follow, which will detail all the intricate design 
details for how each of the key components of the system will operate. This 
section aims to clarify the direction of the project based upon the specification, 
and is designed to detail each of the main specification points. 
 
The next chapter briefly covers the implementation. A class diagram is 
displayed here showing the final structure of the software. Considerations and 
changes made during the development would usually be here, however 
they’ve been placed within the next chapter for critical analysis purposes. 
 
The final chapter covers the critical evaluation and conclusion. The final result 
is analysed here, including the analysis of which parts went well, which parts 
didn’t, and which parts needed changing and why. A reference list containing 
all research sources is also provided at the back of this report. 
 

 
 
 
 



Literature Review 
 

Neural Networks 
The project will require a thorough understanding on neural networks. The 
neural network is the fundamental component of the project, and hence 
requires a large amount of research to allow for a successful final product. 
This section covers the areas regarding the key concepts of a neural network. 
Also considered are the different types of neural networks available, and 
research into previous examples of where neural networks have been used 
successfully. These factors will give a clear indication in regards to the 
direction in which development needs to take place. 
 

What Are Neural Networks? 
A neural network is a series of interconnected cells called neurons, which are 
able to send signals to each other. The signals received by each individual 
neuron, when combined together, are able to create various outputs. The 
combinatorial effects of such signal transmissions mean that each neuron 
individually can influence the way a network behaves, allowing complex 
computations to be performed when different individual input are used within 
the network. 
 
Before being able to understand how a neural network can be emulated in 
code, it’s fundamental to understand the different components which make up 
a neural network. Neural networks consist of a network of neurons. Neurons 
contain branches called dendrites, and at the end of each dendrite is a 
synapse. The synapses within each neuron receive signals from each other 
neuron they’re connected to, resulting in a large network of interconnecting 
neurons. A neuron generates an electrical signal by calculating the inputs of 
each of the connecting neurons, and if a certain threshold is met, the neuron 
fires. When a neuron fires it sends a signal through the axon, which branches 
to one or many other neurons, and enters through the neurons dendrites, thus 
repeating the process: 

 



Analysing the model, it can be determined that neurons can be modelled in 
very basic terms. The neuron receives inputs, and uses these inputs to 
generate outputs. These outputs then become the inputs for other neurons. In 
the biological model, incoming signals only fire if the input from other neurons 
exceeds a defined voltage. This is referred to as the threshold, and this 
threshold determines the amount of voltage that is transmitted as output if the 
neuron fires. The biological model is too complex to model, mainly due to the 
chemical reactions used when generating the specific voltages needed for 
each neuron firing. Instead, when modelling a neuron, the inputs are summed, 
and fed into what is known as the activation function. There are many different 
types of activation function, each one producing an output that is defined 
within certain constraints. The most common two are as follows: 
 

The Step Function 
This function simply takes the inputs from each neuron, and after summing 
the inputs determines whether the result is above the threshold. If the result is 
above the threshold, than the output produced is 1. If the result doesn’t 
exceed the threshold, then the output is a 0: 
 

 
This form of function works well for binary computation, where different inputs 
of 0 and 1 can be interpreted into different output patterns. During research, it 
was found that these activation functions are useful when emulating the type 
of computational logic used in traditional logic gate circuitry. 
 

 
 
 
 
 
 
 
 
 
 



The Sigmoid Function 
This function takes inputs from each neuron, and after summing the input 
feeds the result through an equation, which gives the output in the form of a 
hyperbolic tangent: 
 

 
The hyperbolic tangent is best at emulating the process which is performed 
when a biological neuron fires, and so has much more practical applications 
when creating realistic responses between neurons. The output created by 
this activation function is a decimal value between the range of 0 and 1. The 
function can be altered to enable the outputs to range between -1 and 1. This 
is known as the bipolar sigmoid activation function. 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Types of Neural Networks 
There are various different neural network variants that exist; each designed 
to tailor a specific set of problems. The network types discussed here will 
focus upon artificial intelligence and the process of learning only. These 
networks include the Hopfield Net, single-layer perceptron, and multi-layer 
perceptron. 
 

Hopfield Net 
The Hopfield network is a network which provides associative memory by 
using a series of interconnecting neurons. Neurons act as both inputs and 
outputs, and except binary threshold values: 
 

 
 
This network can be used to store binary patterns, which if incomplete will 
merge at the local minima. In simplistic terms, if a pattern is incorrect by a 
certain margin of error, the inputted pattern will revert the closest desired. This 
is the reason why it’s considered associative; because if you input a nearly 
correct pattern, it will associate it with the nearest pattern that it has stored at 
that time. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Single Layer Neural Network (Perceptron) 
A single layer neural network uses neurons in a linear manner, as apposed to 
the Hopfield network shown previous. Instead of having independent neurons 
interacting with each other, they instead interact through a layer, which 
separates input neurons from output neurons: 
 

 
These networks allow input values to be entered, and depending on the 
weight values for each interconnecting value, as well as the activation function 
chosen, specific output can be created. These outputs can be used within the 
learning process (genetic algorithms in this case), to modify the weight values 
until the neural network learns to accept the inputs that it’s given. 
 

Multi-layer Neural Network (Perceptron) 
The multi-layer neural network is similar in principle to the single layer 
network, except that is uses more then one layer. The addition of a ‘hidden’ 
layer is used, and provides greater complexity: 
 

 



Examples of Neural Networks 
 
Neural networks are used for a variety of different tasks, usually which involve 
some form of artificial intelligence. There are other uses however, which cover 
a large range of difference subject areas, including telephone noise 
cancelling, associative memory storage, and artificial life, and many many 
more. A good comprehensive list detailing the different applications which 
neural networks can be used for can be found here: 
 
http://tralvex.com/pub/nap/ (Travlex Y, 2006) 
 
In the following example Jeff Hannon, a developer at the games studio 
Codemasters, discusses when he created a neural network design for the 
game Colin Mcrae Rally 2. 
 
http://www.generation5.org/content/2001/hannan.asp (Hannon J, 2001) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Genetic Algorithms 
Genetic algorithms will allow the racing AI to adapt and evolve into a working 
system. While the neural network may explicitly control the behaviour of a 
racing car, the genetic algorithms have a direct impact in regards to how the 
racing car perceives the world around it. This section contains basic 
information regarding how genetic algorithms function, and looks into the 
different types of genetic algorithms available. Current examples of genetic 
algorithms used in similar applications are also covered, providing information 
regarding the potential pros and cons of already existing solutions. 
 

What are Genetic Algorithms? 
Genetic algorithms are essentially search algorithms which use evolutionary 
methods and techniques for finding a desired result. The use of evolutionary 
methods such as selection, crossover and mutation are generally used within 
genetic algorithms, however there are cases when not all of the previously 
mentioned are used (simulated annealing for example.). This section will 
briefly cover the basic concepts behind genetic algorithms, as well as some 
more specific points which relate to the project. 
 
Genetic algorithms use many of the same concepts shown in biological 
genetics. There will likely be a population of entities, and these entities will 
likely be of the same species. As such, this species will share common 
characteristics and traits. These traits make up the blueprint for the species, 
and are referred to as genes. Each gene is encoded to contain information for 
a different part of that species make-up, for example eye colour or hair colour, 
and the possible options that exist for this gene are known as alleles. These 
long strings of genes are then connected further into what are known as 
chromosomes. And finally, the species genotype is the combinations of 
different chromosomes with different variations. The diagram below details the 
relations between these terms: 
 

 
 
The position of a gene within a chromosome is referred to as the locus. Within 
genetic algorithms, it’s often the case that algorithms need to manipulate 
individual genes within chromosome. This is because unless the algorithm is 
being developed to accommodate multiple different traits at once, only a 
single chromosome may need encoding as part of a genotype. This is 



particularly the case when genetic algorithms are used for searching and 
retrieving information based on set inputs.  
 
Selection 
Selection is the process which involves selecting a proportional sample from 
the population, based upon the samples fitness. The fitness for each member 
of the population indicates whether or not that member is particularly good or 
bad at the task it needs to complete. There are various methods for selecting 
which members of the population are the most suitable. 
 
Roulette wheel is generally the most popular, as it promotes a strong 
parallelism with how selection occurs in real world scenarios. For roulette 
wheel selection, each member of the population is given a certain percentage 
chance for selection based upon their fitness score. This method ensures that 
even those members of the population with low fitness scores have a chance 
at being chosen for selection. 
 
The next selection method looked into is the tournament selection method. 
This method is likely as one would expect, in that the population is placed into 
a tournament-style competition, and the candidates that reach a certain level 
in the tournament are selected. Each candidate is randomly picked to face 
another randomly picked candidate, and the winner is the candidate with the 
highest fitness. The winners of these rounds progress to compete against 
other winners, and the process repeats until there is a winner: 
 

 
 
The final selection type which isn’t used very often is truncation selection. This 
method involves ordering the population by fitness, and then keeping the best 
candidates of a certain fraction, for example keeping the best half. This 
method isn’t used much because of the way it filters out members of the 
population that may potentially contain desired genes, and therefore rapidly 
decreases population diversity. There may be a way to counteract this 
problem with high mutation rates, similar to simulated annealing. It should be 
noted that this is a theoretical observation made by the author, and not a 
tested and confirmed method. 
 



Crossover 
This is the process which involves switching the genes of two selected sample 
members so that the resulting result is a combination of both the original 
sample members. Crossover generally follows the same basic concept; in that 
genes which have been selected for crossover follow a set pattern. The locus 
within each chromosome is generally used to split the array of genes up, and 
then these genes are swapped over at the locus: 
 

 
 
Choosing to swap at multiple different loci is also possible, however caution 
needs to be taken that constraints regarding the chromosome are not broken 
in the process. Alternating between crossover methods allows for a more 
realistic evolutionary process to occur, as biological recombination involves 
the occurrence of dominant and recessive gene traits, as well as particular 
chances regarding which genes will be crossed over and which will not. 
 

Mutation 
Mutation is the process of randomly mutations the value of a gene, based 
upon a specified level of chance. Within biological evolution, the chances of 
mutations are very small. For computational purposes however, a higher rate 
is generally accepted so as to benefit the population in the shortest possible 
time. Mutation allows for populations where convergence occurs quickly to 
continue to evolve, allowing the populations level of diversity to be maintained 
at a steady rate.  
 
Mutation is performed differently, depending upon the encoding used for 
genotype. For example, if eye colour was chosen to be mutated, there would 
be a certain number of alleles that exist as potential eye colours. If these were 
represented using a numerical value, then the mutation operator would need 
to decide how best to mutate the value without destroying the constraints of 
that gene. The rate and size of mutations need to be considered based upon 
the situation, as small and infrequent mutations may have no effect, while 
large and consistent mutations may prevent crossover from being effective. 



Types of Genetic Algorithms 
Genetic algorithms don’t seem to necessarily have particular types. 
Depending on the situation, choosing only certain parts of genetic algorithms 
may only be required. There is one particular type, which is also considered a 
meta-heuristic algorithm; simulated annealing. 
 

Simulated Annealing 
This process operates in a similar fashion to how mutation occurs within 
standard genetic algorithms. The big difference however is that only mutation 
is used throughout the entire process. Crossover can be implemented as an 
optimisation; however the fundamental concept of simulated annealing is that 
a mutation occurs based on decreasing chance after each iteration of the 
algorithm. Crossover also naturally doesn’t occur within simulated annealing 
algorithms because the algorithm generally uses a population of only one. If 
the fitness increases as a result of the mutation, then this one member of the 
population keeps the changes made, else the member doesn’t change. This 
cycle is then repeated until a satisfactory result has been produced.  
 

 
 

 
 
 
 
 
 
 
 
 
 



Examples of Genetic Algorithms 
Genetic algorithms are generally used in many specific areas of computing, 
and one of the most common usages of them is in finding the most optimum 
solution. The travelling salesman problem is a classic example, which shows 
the effectiveness of genetic algorithms against iterative algorithms when 
working with large numbers of cities: 
 
http://www.lalena.com/AI/Tsp/  (Lalena M, unknown) 
 
Another use for genetic algorithms is the ability to evolve the behaviour of 
artificial entities. In the following example, ‘organisms’ are evolved so that 
they can become better eaters of the food growing around them: 
 
http://math.hws.edu/xJava/GA/ (Eck D, 2001) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



Analysis and Specification 
 

In order to determine the aims and specifications, it’s important that the 
different ways in which the project can be accomplished are researched into. 
This section will cover the analysis of the research contained within the 
literature review, and looks at the different components which will be present 
in the final system specification. Here, the aims for the project will be 
established, and a clear set of the major tasks will be identified ready for the 
design process. A successful analysis will also mean that future potential 
problems can be isolated easier, and alternative options discussed in this 
section will allow for different approaches to be taken if necessary. 
 
The major components for analysis, identified after completing the literature 
review, are as follows: 
 

• Neural Network Design 

• Genetic Algorithm Design 

• Track Design 

• Sensor Design 
 
 

Neural Network Design 
After conducting researching into a few different types, it became sufficiently 
clear how to design the neural network for the racing car AI. Analysis of the 
Colin McRae Rally game, which uses a neural network for its racing AI, 
allowed me to understand on a basic level that it’s possible to successfully 
implement a multi-layer perceptron for the task. After researching, it appears 
that both single and multi-layer perceptrons are used in a large range of 
robotic, movement based scenarios, and that the inputs and outputs can be 
easily acquired without too much hassle. For example, the structure for both 
the single and multi-layer perceptrons can be created as a stand-alone 
implementation, which accepts input (information about cars surrounding) and 
produces outputs (steering direction, speed). The usage of a multilayer 
network should provide output data that is more precise, and that is capable 
of handling more complex bends and manoeuvres on the track. The 
downsides to using a multilayer perceptron are that a more complex 
crossover system would be required. If however the neural network is 
designed so that any number of layers can be implemented with ease, then 
the network topology can be manipulated to facilitate in the creation of a more 
successful model.  
 
The values used for weights are another key consideration which needs to be 
taken into account. The options consist of either integer values, or decimal 
values. Integer values would require the creation of constraints, considering 
that the range of whole numbers, as well as the requirement for only a fraction 
of that range, would result in unpredictable results if the constraints are 
broken. Decimal values, based upon the activation functions available, would 
appear to be the best choice by far. Decimal values within C# can be created 
easily using the Random class type, and it just so happens that the sigmoid 



activation function utilises the usage of decimal values between 0 and 1. This 
means that creating values for the weights during the initialisation stage of the 
network would be considerably easier, and more efficient to develop and 
maintain in code. 
 
The inputs for the network then would need to represent the track details as 
effectively as possible. Examples which have been looked at generally make 
use of straight line ‘sensors’, which in most cases act as rays. The information 
returned from these sensors is then put into the network as inputs, and the 
output produced causes the entity to perform some form of action. Steering is 
usually one of the outputs, so this will almost likely be the case for the neural 
network design for this project. The usage of acceleration seems to be an 
interesting idea as well, as many of the examples which were used didn’t 
feature any form of speed moderation as an output. 
 

Genetic Algorithm Design 
The genetic algorithm can easily be encoded by using the weights from the 
neural network as the genes which make up a chromosome. This data can 
then be subjected to the standard processes involved in genetic algorithms, 
such as selection, crossover and mutation. The selection process would likely 
use roulette selection under most circumstances, however the usage of 
truncation selection may prove to create a more interesting outcome. In order 
to make this project more unique, the truncation selection method can also 
provide more information as to its suitability within this type of project. Also, 
because the algorithm can easily be interchanged with another selection 
algorithm, the creation of a roulette selection algorithm may be possible 
depending on the success and available time during the projects development 
cycle. 
 
Crossover could possible be performed using a type of ‘staggered’ pattern, 
such as swapping genes at each odd or even locus. Once again, 
modifications can be made if this method proves to be ineffective, assuming 
there is available time to do so. 
 
Mutation should likely occur at a consistently high rate. This would allow the 
truncation selection to select more diverse samples from the population; by 
modifying select genes until the best genetically modified car is bred. 
 

Track Design 
A track design of some form will need to be created, which enables the car to 
intact with it, and determine where it is on the track. The use of different 
colours for the track and non-track space would appear to be a potential 
option, as the colour of each pixel can be determined by mapping the 2D 
texture and acquiring the colour that the car is currently on, or is near. Another 
option would be to use collision boxes, however determining the extent of 
collision using such a method may be more complex then desired. Based on 
the research into how the neural network will accept data, the usage of pixel 
colour checking would better suit the facilitation of some form of line based 
sensor. 



 

Sensor Design 
Based upon the potential idea of using pixel checking for determining the cars 
surrounding, a line, or vector based, sensor could be used to check whether 
certain points in a straight line distance away from the car are road or not 
roads. Another option could involve using a ray to calculate the distance; 
however there are several difficulties with that idea. Firstly, the 
implementation of such a thing would require much more extensive research. 
The second point is that if a ray was used, then the output of the ray would 
need to somehow be normalised to meet the input criteria for the chosen 
neural network design. Simulating the usage of a ray by defining the length 
and checking points along the length would prove much more successful, 
especially considering that they’d be more resource friendly, and hence 
wouldn’t cause slow down issues when a large population is being iterated 
through. 
 
Specification 
Using the above analysis, and by filling in the details in-between, a list of aims 
and objectives can be created, detailing each of the tasks which need 
completing in order to successfully complete the project. The specification 
objectives are as follows: 
 

• Complete neural network implementation, which includes the 
completion of a fully functional activation function, and generation of 
desired outputs. 

• Complete genetic algorithm implementation, which includes the ability 
to reproduce more successful cars. 

• Complete track implementation, including the implementation of track 
segments and desired direction vectors. 

• Complete the sensor implementation for each car, and ensure that the 
sensors accurately collect data about the layout of the track in range. 

• Successfully combine all of the above, and then create a training 
system which allows the user to train the network under supervision. 

• Allow the best car from the population the ability to race on an entirely 
different track, to test whether the training of the car was successful. 

 

 
 
 
 
 
 
 
 
 



Design 
 
In this section, each of the subjects which are covered in the analysis is 
worked upon. Designs which incorporate the research and technical 
information gathered in both the literature review and analysis are used to 
create implementation-ready designs. 
 

Neural Network Design 
 
The neural network takes advantage of the object-orientated nature of C#, 
and allows the creation of a completely separate and modular design model, 
which can be incorporated into the implementation for the car. Each neuron 
within the network requires connection to every neuron in the layer above. 
The most effective method available involves first splitting the layers of the 
network up into three distinct layers; the input layer, the hidden layer, and the 
output layer. These layers each facilitate in storing three different types of 
neuron signified by their parent class, these being input neurons, hidden 
neurons, and output neurons. Each neuron within each of the layers stores a 
certain amount of information which allows them to function correctly. It just so 
happens that the amount of information stored by each type of neuron 
increases, using the same information as neurons that proceeds it. Therefore 
the following model can be created: 
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In the model above, the neural network class contains a single instance of 
each of the required layers that it needs to function. Within these layers, lists 
of neurons relating to the relevant neuron type are stored.  
 
As shown in the model, the input neuron is used as the base class. This 
neuron stores only inputs, and because all neurons contain inputs, then this 
works as a suitable base class. The hidden neuron also contains inputs, and 
therefore can inherit this from the input class. It also contains additional 



information about the weights for the input neurons that it shares connections 
with. These weights are stored within an array, which contains all the 
connections relevant to each input neuron in the proceeding layer. Finally, the 
output neuron uses the same information from both the input and hidden 
neuron class, and thus only needs to inherit from the hidden class, as it 
contains the input class data through inheritance already. The output neuron 
class has additional data regarding the output created from after the activation 
function is used. The addition of the output data provides clarity for the overall 
structure of the network. It should be noted that it is possible to link hidden 
neuron layers together, and thus avoid the need for the output layer. However 
for the sake of coherence, the output layer exists within this particular 
instance of model. 
The layers of each neuron type alone are not enough, as these layers are 
only designed to store data. Additional methods are required that allow these 
layers to interact with other, and therefore create a functioning neural network.  
 
Firstly, there needs to be some form of initialisation for each relevant neuron 
in the network. This initialisation will provide each of the weights that exist 
within each relevant neuron with an initial random value. This random value 
will be within the specified constraints, and will provide a completely a neural 
network that is created with completely unique neurons as part of its setup. 
The easiest way to perform this initialisation will be to iterate through the 
weights both the hidden and output layers’ neurons, and to allocate a random 
number within the ranges permitted (decimal values between -1 and 1). The 
pseudo code would look something like the following: 
 
Foreach (HiddenNeuron neuron in hiddenNeuronLayer) 
{ 
 Foreach (double weight in weights) 

{ 
 Weight = random value between -1 and 1; 
} 

} 
 
Foreach (OutputNeuron neuron in outputNeuronLayer) 
{ 
 Foreach (double weight in weights) 

{ 
 Weight = random value between -1 and 1; 
} 

} 
 
 
 
 
 
 
 
 



The next method which needs implementing is the bipolar sigmoid activation 
function. As mentioned within the analysis, the bipolar sigmoid activation 
function will provide outputs within the desired range, and will also 
accommodate the inputs within the same range. This function is also much 
easier to implement, and based upon the required results will suit the 
designed neural network much better then the others mentioned in the 
analysis. Both the mathematical and pseudo code are shown below: 
 

     
 
In C# :   ((1.0 - Math.Exp(-(input))) / (1.0 + Math.Exp(-(input)))); 
 
Input is the sum of all inputs, and Math.Exp() is used to return the exponent of 
the passed parameter. 
 
With the activation function determined, all that remains is to create the 
method that will use the activation function and inputs and weights from each 
neuron to generate an output. The output for each neuron will then be used as 
the inputs for the next neuron layer. This will be done by iterating through 
each neuron, and multiplying the input from the previous neurons with the 
weights attributed to those neurons. The results will then be summed 
together, and the result will be used as the input for the bipolar sigmoid 
activation function. The code pseudo code is as follows: 
 
Foreach (HiddenNeuron hiddenNeuron in hiddenNeuronLayer) 
{ 
 numberOfConnections = hiddenNeuron.weights.length; 

for (int x = 0; x < numberOfConnections; x++) 
{ 

sumOfInput += hiddenNeuron.weights[x] * 
inputLayer.neurons[x].inputValue; 
} 
 
hiddenNeuron.inputValue = 

bipolarSigmoidActivationFunction(sumOfInput); 
} 
 
Foreach (OutputNeuron outputNeuron in outputNeuronLayer) 
{ 
 numberOfConnections = outputNeuron.weights.length; 

for (int x = 0; x < numberOfConnections; x++) 
{ 

sumOfInput += outputNeuron.weights[x] * 
hiddenLayer.neurons[x].inputValue; 

} 
 
outputNeuron.output = bipolarSigmoidActivationFunction(sumOfInput); 

} 
 



The first half of the above code will iterate through the hidden layer, and use 
the number of connections contained within each hidden neuron to determine 
how many input neurons exist to connect with. Once the number of 
connections have been established, the weights at stored at each index in the 
hidden neuron are multiplied by the input value within the input neuron that 
matches it. The example below should show this much more clearly: 
 
 

 
 
 
The second half of the code is identicial to the first, except the results from the 
activation function in the first half are used to calculate the output within each 
outputNeuron. This design should enable the creation of the network setup 
decided within the analysis, using five input neurons, three hidden neurons, 
and two output neurons. This design also means that if furthur neurons need 
to be added at any point, the relationships between connections can be done 
by simply manipulating the number of connections for each layer in relation to 
the number of neurons in the previous layer.  
 

 
 
 
 
 
 
 
 
 
 
 



Genetic Algorithm Design 
 
The genetic algorithm needs to be able to access the data contained within 
the neural network. In specifics, the data required is the weight data stored 
within each of the hidden and output neuron. Manipulating this data 
genetically will allow the neural network for each car to evolve based, upon 
whether the neural networks being used by each particular car are effective at 
guiding the car around the track. 
 
The first important task is establishing how the genetics for each car can be 
established using the weights for each network. The weight data for each 
neuron is stored within an array, and this was intentionally done so to provide 
easier access to the data. So, the data can be theoretically considered to be 
encoded as shown below: 
 

 
 
The diagram above details a hidden neuron layer containing four hidden 
neurons, which each in contain four weights. In this instance, the first four 
weights would theoretically represent the first four genes in the chromosome. 
Then the next four would represent the next four, and so on. The advantage 
to this is that all four elements at the specified locus can be accessed using 
the index for the array, and therefore the formatting for each individual trait 
within the chromosome is always kept intact. This means that crossover and 
mutation will be considerably easier to perform using standard search and 
swap algorithms, and constraints in regards to the structure and value ranges 
will be conformed to. 
 

 
 
 
 
 
 
 
 



Crossover 
 
The desired algorithm will take the ‘even’ loci of the first chromosome, and 
swap them with the ‘even’ loci of the second chromosome: 
 

 
 
The previous diagram does not represent the values used within the 
chromosomes. The usage of numbers and letters are simply for clarity. Those 
values would instead be decimal values between -1 and 1. An algorithm for 
the above crossover would involve iterating through a hidden neuron using an 
index, using that reference to access the weight value, and then using the 
same index, iterate through the second hidden neuron selected for the 
crossover method. The index will be incremented by 2, as apposed to 1, so 
that every-other weight is selected, and then these two weights will be 
crossed over. The pseudo code is as follows: 
 
For (int weightCount = 0; weightCount < hiddenNeuron1.weights.length; 
weightcount +=2) 
{ 
 tempWeightValue = hiddenNeuron1.weights[weightCount]; 
 hiddenNeuron1.weights[weightCount] = 
hiddenNeuron2.weights[weightCount]; 
 hiddenNeuron2.weights[weightCount] = tempWeightValue; 
} 
 
The above code will then be used for each neuron in the neuron layer, as 
shown in the above diagram as the point after each red line (locus).  
 

 
 
 
 
 
 
 
 



Mutation 
 
Mutation will occur based on a set rate, and will occur before crossover of the 
two selected neurons. The mutation will involve increasing or decreasing one 
of the weight values stored within each neuron by a random value, which will 
be generated using a random number generator. The random number 
generator will also select whether the previously generated number is added 
or subtracted from the weight. In order to calculate which weight should be 
selected from the neuron for mutation, a random number within the range of 0 
and (neuron.weights.length-1) will be selected. 
 
The code for this will simply utilise one random number generator that will first 
produce a value which defines the size of the change, and a second value, 
that will be checked against a constant value. This value will almost certainly 
be 0.5, so that a randomly generated decimal number between 0 and 1 will 
fall either above or below the value. The original random number is modified 
to ensure that the change isn’t too significant, and then if the value falls above 
0.5, then this value is added to weight. If it’s less than 0.5, then the value is 
subtracted from the weight. The pseudo code for this should be as follows: 
 
mutateIndex = randomNumber.Next(neuron.weights.Length); 
mutateSignCheck = randomNumber.NextDouble(); 
mutateValue = randomNumber.NextDouble(); 
 
if (mutateSignCheck > 0.5) 
{ 

neuron.weights[mutateIndex] += mutateValue/10; 
} 
else  
{ 

neuron.weights[mutateIndex] -= mutateValue/10; 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The Selection Process 
 
The selection method will be based upon the truncation selection method. A 
sample size will be defined, and a population of cars will be created. The 
sample will represent a a number of cars, each with an initally created neural 
network. These networks will all have a very high chance of being completely 
unique, and will therefore provide a highly varied sample. Inially, the sample 
which is created randomly will be used in the first simulation as the first 
generation, and will each receive calculated fitness levels based upon their 
success at manouvering around the test track. Once the fitness levels have 
been established, then a selection process needs to completed which ensures 
that the best cars are kept for breeding, and the others are discarded from the 
sample. Based upon the literature review and mentioned in the analysis, it 
would appear that strictly keeping the best cars using a tournament style 
selection process is the best method for selection. Keeping the best half of the 
sample, and then randomly crossing over pairs of cars will be the selected 
method of selection. So now that the selection type is determined, a method 
of randomly selecting these cars needs to be defined. This can be done quite 
simply by selecting the first car in the list of sample cars, and then randomly 
selecting another car from the remaining list, using the number of cars minus 
one as the range for the random number selection: 
 

 
 
The method above ensures that the number of cars in the newly created 
sample is identical to that of the original sample. To also ensure that there is 
always a pair at the last iteration of the selection, the sample size will be set to 
an even value. Once the the cars have been selected,and crossover and 
mutation operator have been used upon them, the new sample is then run 
through the simulation again, and this process is repeated until a satisfactory 
car has been bred. 
 
 
 
 
 
 
 



Track Design 
Based on the analysis, the track will consist of an array of pixels, using two 
colours to differentiate between whether that pixel is a part of the road or not: 
 

 
 
Each car will have access to the track data at all times, and to save on 
memory usage all cars will have access to one instance of the track data. 
 
In order to determine whether a car is travelling in the desired direction on the 
track, the track will be split into segments, which will each contain a 2D vector. 
The vector will become available to any car that is within the segment it 
belongs to, and will provide the car will the data it needs to calculate its fitness 
value: 
 

 
 



Sensor Design 
As one of the key components to the final product, the sensor class will need 
to be capable of successfully relaying data about the track into each cars 
neural network. First the method of detection needs to be established. Based 
on the analysis, the easiest and most time effective way of accomplishing this 
is by using multiple vectors. Then by using the cars current position, modifying 
the vectors current magnitude, and taking the cars current heading into 
consideration, multiple points along a line can be used to check for collision 
with red pixels from the track: 
 

 
 
As shown above, the return value for the furthest point for the sensor is 1. The 
range for the sensor will be between 0 and 1, and all points inbetween will 
have values relative to where they are between 0 and 1. These values will be 
determined by dividing 1 by the maximum number of detection points. The 
final sensor sensor which the car will use will consist of 5 of the above 
sensors, placed as follows: 
 

 
 
 
 
 



Implementation 
 
This section contains the class diagrams for the final product. 
 

Neural Network 
 

 
 
 
 
 
 
 
 
 

 



Framework Structure (including Genetic Algorithm 
Modifications) 

 
 
 
 
 



Critical Evaluation and Conclusion 
 
The final product has met all the requirements at the very least moderately 
well. Each specification point will be evaluated separately. 
 
Complete neural network implementation, which includes the completion of a 
fully functional activation function, and generation of desired outputs. 
 

The neural network itself works exactly as desired, and due to the structural 
design is also usable as a separate class on its own. There were however 
issues with the type of neural network which was originally being used. The 
multi-layer neural network proved to be an unworkable solution when 
attempting to crossover the genes for each neuron. This was due to epistasis. 
This occurs when the modifying of one gene has impacts upon other genes 
which rely on it. This meant that when crossover occurred between genes, the 
changing of the genes within the hidden layer caused unexpected results at 
the output from the output neuron layer. Thankfully, the design of the neural 
network meant that the hidden layer could easily be bypassed, and as a result 
the multi-layer network became a single layer network. This changed 
successfully allowed the cars to breed, and so the decision to design the 
neural network as was done seemed to be a good choice. 
 
Complete genetic algorithm implementation, which includes the ability to 
reproduce more successful cars. 
 
The genetic algorithm and its operators work pretty much as desired. The 
genetic algorithms work perfectly as they are, however that’s not to say that 
the choice of selection method was efficient. It seems that using truncation as 
the selection method worked fine; however the crossover diversity appeared 
to suffer much more then originally expected. It seems that the amount of 
potential for better members of the population isn’t as high as was expected, 
evident by the fact that only generally between 1 and 5 out of 200 in the 
sample set would improve their general fitness values after each iteration. If 
more time was available, the implementation of the roulette wheel selection 
would have taken place, as mentioned in the analysis. The choice to use a 
staggered odd/even locus for gene selection during crossover also seemed 
like a good initial thought, however with further consideration it actually seems 
that doing so caused the crossover function to produce new members of the 
public that were much too different in comparison to their parents. For 
example, if one of the two members used in the crossover functions only 
needed one gene from the other member in order to produce better offspring, 
it wouldn’t work correctly as the gene required and every other gene that was 
odd/even would also be crossed over within the same iteration. 
 
Complete track implementation, including the implementation of track 
segments and desired direction vectors. 
 
This particular specification task works perfectly without any problems known 
so far. This is likely due to the lower level of speciality involved in the process, 
as this objective simply involved the implementation of a storage system 



which can be accessed using co-ordinate data. The task of creating a series 
of classes which store a global array of pixels and track segment objects was 
fairly straight forward. 
 
Complete the sensor implementation for each car, and ensure that the 
sensors accurately collect data about the layout of the track in range. 
 
The sensors were surprisingly easier to implement then first expected, and 
work perfectly. They were also created in such a way that the number of 
sensors, and the range to which they extended, could be modified and 
customised with remarkable ease. The original idea was to essentially ‘hard-
code’, and make specific to the layout provided in the design. However, the 
potential to refactor the design and replace constant values with user 
configurable values meant that the class would be truly modular, and 
tweaking could be performed upon the model in order to find the best length 
for each individual sensor. The only possible missing aspect for the sensor 
class was that instead of using images to signify each point of the sensor, the 
letter ‘O’ was used. This was done as a temporary measure, however once it 
became clear that time was becoming an increasingly problematic factor, it 
was decided that it wasn’t a major concern and so was left in the final product. 
The only issue that using the letter ‘O’ really caused was the issue regarding 
the origin to which it theoretically should have rotated around. Although the 
character can, in theory, be rotated and still remain the same, there were 
some slight discrepancies regarding the sensor display not matching the 
tracks pixel map. The different is only by roughly 2-3 pixels, and the affects 
are only superficial. Apart from that it works as desired. 
 
Successfully combine all of the above, and then create a training system 
which allows the user to train the network under supervision 
 
The training system works as expected. There is a notable limit to the size of 
the population sample before the frame rate starts to decrease, however this 
only effects the speed of the model, and not it’s efficiency in the task. The limit 
appears to be roughly 200+, which is acceptable considering the amount of 
computation performed for each car per frame. The drop in frame rate also 
only occurs when all cars are displayed on screen. If the option to display the 
best car only is enabled, then the frame rate increases dramatically. This is 
likely due to the way in which the method was coded for displaying the 
sensors. In order to display the sensors, each sensor is essentially checked 
twice, firstly to acquire track data, and secondly to determine where to draw 
the sensor points. Both methods were intended to be merged, and a boolean 
value used to toggle drawing preference, however once again time was a 
limiting factor. The functionality itself however works exactly as desired so, 
apart from the point made previous, it seems that this specification point was 
completed successfully. 
 
Allow the best car from the population the ability to race on an entirely 
different track, to test whether the training of the car was successful. 
 



The final race track was a simple extension of the training track 
implementation, and so works just as well. As passing the final track tests 
whether the car is adequately trained, the conclusion can be made that it’s 
functioning perfectly, as the car is capable of traversing the track after a 
successful training session. The advantage to the final race track is that there 
are no desired vector directions required, and so as long as the road width is 
roughly similar to the road width used in the training track, the track can be as 
complex as desired without needing to fit within the size constraints of the 
track segments. The successful completion of this specification point therefore 
shows that the overall project was a success. 
 
 
In terms of project management, if this project was to be repeated again, then 
time management would be a point emphasised on the most. During the time 
period allocated, the availability of free time, and also that of other module 
deadlines, really needed to be considered when planning for the design and 
implementation of the project. Neither was critically affected during this 
project; however correct time allocation and job distribution for the different 
tasks may have provided the extra time needed to implement the changes 
desired for the roulette wheel selection function, the sensor image display 
implementation, and the combination of sensor operations and drawing. 
Another improvement that could have been made was to increase the amount 
of documented research in the literature review, to reflect the amount of 
research that was actually carried out. Unfortunately however, there was 
simply not enough time to include everything without jeopardising the 
completion of the entire report. The limit regarding the guideline number of 
words was removed after discussing the problems regarding fitting the data 
gathered within the documentation. Thankfully however, the amount of typed 
content was able to be reduced to a minimum by providing much more 
illustrations and diagrams through the documentation. It was essential to try 
and maintain clarity while not exceeding the limits that were set, and so it 
seemed that using specifically created diagrams would help in accomplishing 
that feat. 
 
In the end, with the specification points completed and a working deliverable 
completed, it can be stated that this project was an overall success. In the 
end, it seems it is indeed possible to model a form of artificial intelligence that 
is capable of manoeuvring a car around a track.  
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